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neighbour king model. A Monte Carlo study 

M J Velgakis? and J Oitmaa 
School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 

Received 25 June 1987 

Abstract. The critical behaviour of an lsing model with competing interactions along both 
axes of a square lauice (the B N N I \ ; I  model) is investigated by Monte Carlo methods. 
Convincing evidence for the existence of modulated structures near the transition(s) is 
obtained but the form of the phase diagram remains unclear. 

1. Introduction 

In two recent papers (Oitmaa and Velgakis 1987, Oitmaa er a1 1987) we investigated 
the nature of the phase transitions and phase diagram of a particular type of two- 
dimensional Ising model. This model, which we termed the biaxial next-nearest- 
neighbour Ising model or B N N N I  model, has competing nearest- and next-nearest- 
neighbour interactions along both axes of a square lattice, as shown in figure l ( a ) .  

Ising models with competing interactions have been found to exhibit rich and 
complex phase diagrams, with a variety of ordered phases at low temperatures, 
including spatially modulated phases (Selke 1984). The nature of the phase transition 
can also vary quite dramatically, with the occurrence, in particular cases, of non- 
universal behaviour, first-order transitions and multicritical points. A model which 
has been much studied in this context is the A N N N I  model. The model studied in this 
paper can be thought of as an isotopic version of the A N N N I  model. 

I a1 l b l  

Figure 1. ( a )  The interactions of the two-dimensional B N N ~ I  model. i b )  The two types 
of ground state for J' < -fIf  
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The Hamiltonian of the model is 

where the summations are over nearest- and next-nearest-neighbour pairs along both 
lattice directions. Because the free energy in zero field is an even function of J,  we 
choose this interaction to be ferromagnetic ( J  > 0). The other interaction can have 
either sign. Of greatest interest is the region J ’ <  - i l J l ,  where the ground state is either 
of the ‘chessboard’ or ‘staircase’ type, as shown in figure l ( b ) .  The nature of the 
transition, or transitions, from this ordered phase to the high-temperature disordered 
phase remains uncertain. Early Monte Carlo work (Hornreich et a1 1979, Selke and 
Fisher 1980) suggested a sequence of two transitions: a transition from the commensur- 
ately modulated chessboard phase to an intermediate incommensurate phase, followed 
by a Kosterlitz-Thouless transition to the disordered phase. However, the more recent 
Monte Carlo study of Landau and Binder (1985) suggests that there is no intermediate 
phase; rather, the commensurate and disordered phases are separated by a single 
first-order transition. 

Our previous work on this model using series methods (Oitmaa and Velgakis 1987) 
and transfer matrix calculations (Oitmaa et a1 1987) was unable to resolve this 
discrepancy. Both approaches did give some indication that the two-transition picture 
was perhaps the correct one, but the results could not be interpreted unambiguously. 
We were thus led to continue our studies of this, at first glance simple but apparently 
quite subtle, model, this time using Monte Carlo methods. 

The arrangement of the paper is as follows. In § 2 we briefly discuss our methods, 
and present results for the internal energy as a function of temperature. These results, 
for relatively large lattices, do  not support the picture of a single first-order transition. 
We find evidence for the existence of a sequence of intermediate states, and in § 3 we 
attempt to characterise the nature of these. Finally, in § 4 we summarise our results 
and present our conclusions. 

2. The internal energy 

The general ideas and the technical details of Monte Carlo simulations are well known 
and documented, so we will not repeat these at length. We have found the article by 
Binder and Stauffer (1984) particularly helpful, and recommend it to others embarking 
on Monte Carlo calculations for the first time. 

We have considered N x N Ising systems, described by the Hamiltonian ( l ) ,  on a 
square lattice with periodic boundary conditions. Our computer program allows us 
to choose a starting configuration which is disordered (‘hot’ start) or ordered (‘cold’ 
start). A sequence of configurations is then generated via the standard Metropolis 
importance-sampling algorithm. Spins are chosen randomly for flipping, and a ‘sweep’ 
(more usually called a Mcs/spin) corresponds to a sequence of N 2  tests, i.e. on average 
each spin is chosen once per sweep. This defines a ‘timescale’ for the simulation. The 
configurational properties of the system are then ‘measured’ (i.e. computed) for a 
sequence of time steps and thermodynamic quantities obtained as sample averages of 
the resulting time series { X i }  

1 ”  
n i = l  

( X ) = -  x,. 
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In order to reduce correlations between successive measurements we have chosen to 
make a measurement after every NBLOCK sweeps, where typically NBLOCK = 25. 

In all of the work reported here we have chosen the ratio of parameters J ‘ /  J = -1, 
a point which lies well within the ‘modulated’ region of the phase diagram. For this 
particular value Landau and Binder (1985) give a temperature of k B T / J  = 1.4 for the 
first-order transition, obtained for a 48 x 48 lattice. 

Our first runs were carried out on a 40 x 40 lattice, to try to reproduce the Landau- 
Binder results. In figure 2 we show results of two runs, in the form of energy time 
series, for K = J / k B T  = 0.675. The upper graph, corresponding to an initial disordered 
configuration, settles down quickly to a mean energy of approximately -1.72 whereas 
the lower graph, corresponding to an initial ordered state, settles down to a mean 
energy of approximately -1.95. Clearly at this temperature there are two quasi- 
equilibrium states, a situation characteristic of a system which undergoes a first-order 
transition. By carefully heating or cooling the system it is possible to follow either of 
these states into a temperature regime where they are clearly not the absolute equilibrium 
state, but merely metastable. Based on a large number of runs of this type, we obtain 
the variation of internal energy with temperature shown in figure 3( a ) ,  which supports 
the picture of a first-order transition in the region K = 0.7. To verify this, and to locate 
the transition temperature more accurately, we have integrated the internal energy to 
obtain the free energies for the high- and low-temperature branches as discussed by 
Binder and Stauffer (1984). The two free-energy branches, shown in figure 3( b ) ,  clearly 
intersect with different slopes at K = 0.65. This apparently confirms the Landau-Binder 
conclusion, namely a first-order transition, albeit at a slightly higher temperature, 
k B T / J -  1.54. 

In order to confirm these conclusions, and to see if the transition temperature 
showed any significant size dependence, we decided to carry out further runs on larger 
lattices, first 80 x 80 and subsequently 120 x 120. The strategy adopted was the same 

1 

--- 
0 60 120 180 24 0 

Time l x  IO2) 

Figure 2. Energy time series for the 40 x 40 lattice for temperature K = 0.675. The two 
graphs correspond to (A) hot and (B) cold starts and illustrate the two stable or quasi-stable 
states at this temperature. 
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Figure 3. ( a )  Internal energy against temperature for the 40x40 lattice, showing two 
distinct energy branches. ( b )  The free energies of the two branches, intersecting with 
different slopes at K = 0.65. 

as before, namely to look very closely at the time series for the energy and to identify 
equilibrium or quasi-equilibrium states. In all cases we have used rather long runs of 
up to 30000 sweeps. Our results suggest that the true picture is more complex than 
that described above. In particular, for the 80 x 80 lattice we have obtained strong 
evidence for the existence of an intermediate state, which we believe to be thermo- 
dynamically stable over a certain temperature range. In figure 4 we show the time 
series for the energy, for two runs, both corresponding to K = 0.650. The upper trace 
is for a system, initially in a disordered state, which has been allowed to cool slowly, 

I I 

C 1 Fiestart from K:O 625 I 
D 
I 

I 
1 

0 60 12 0 180 240 

Time I x 10’) 

Figure 4. Energy time series for the 80 x 80 lattice for temperature K = 0.650. The upper 
trace corresponds to point P in figure 5 ,  the lower trace to point R, relaxing to point Q. 
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Figure 5. Internal energy against temperature for the 
80 x 80 lattice, showing three distinct energy 
branches. The points P, Q, R refer to the text and 
to figure 4. The arrows indicate the manner in which 
a particular state was reached, i.e. from a hot start, 
cold start or restart from a previous point. The open 
circles denote unstable points. 

K=Jlk,T 

Figure 6. Internal energy against temperature for the 
120 x 120 lattice, showing four energy branches. The 
open circles denote unstable points. 

through a sequence of intermediate temperatures. This corresponds to point P in figure 
5. We believe that this state is metastable, since a hot start at this temperature takes 
the system to the intermediate state (point Q in figure 5). The lower trace shows the 
system, started in an ordered configuration, initially reaching a quasi-equilibrium state 
with energy -1.93 (point R in figure 5), but then spontaneously relaxing to a higher 
energy state (point Q in figure 5) which appears to be the stable state at this temperature. 
Figure 5 shows the plot of internal energy against temperature for the 80 x 80 lattice, 
with three distinct energy branches. Similar runs for a 120x 120 lattice show four 
distinct energy branches, as shown in figure 6 .  In this case there appear to be two 
intermediate states, each of which appears to be stable over a finite temperature range. 

While these results clearly indicate that the behaviour of the model is rather unusual, 
the intepration is not entirely clear. In the following section we attempt to identify 
the nature of the intermediate phase(s). 

3. The nature of the phases 

Our Monte Carlo runs for the 80 x 80 lattice, reported in the previous section, indicate 
the possible presence of a stable intermediate state. In order to try to understand the 
nature of this state, if it exists, we have followed two approaches. 

The first is to look carefully at the spin configurations themselves to try to discern 
an apparent pattern. Figure 7 shows four such configurations, corresponding to the 
points A, B, C and D in the time series (figure 4). The first configuration, corresponding 
to the lowest energy branch, is clearly a chessboard phase with a small number of 
isolated defects. The second configuration, corresponding to the intermediate branch, 
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Figure 7. Spin configurations for the 80x 80 lattice. ( a ) ,  (b j ,  ( c ) ,  ( d )  correspond to the 
points A, B, C, D in the energy time series of figure 4. 

consists of regions of chessboard-like order indispersed with regions of staircase-like 
order. In addition there are many ‘three-spin’ groups, consisting of three adjacent 
spins all up or all down. These appear to be the main mechanism which is breaking 
up the ordered phases. A similar process has been observed in the two-dimensional 
ANNNI model (Selke 1981), although the present case is more complicated since the 
three-spin groups occur along both lattice directions. The last two configurations both 
correspond to the highest energy branch. The number of three-spin groups is sig- 
nificantly larger and other types of composite defect structures appear. There is, 
however, qualitative similarity between these configurations and the intermediate-state 
configuration. 

A tentative explanation of what is happening can be given in terms of these three-spin 
groups. The fully ordered chessboard and staircase structures have a wavevector 
q = 2 ~ ( 1 , : )  in the diagonal direction. To disturb the structure only locally, it is 
necessary to create three-spin groups in multiples of four along each row or column 
of the lattice. For the 80 x 80 lattice the intermediate state appears to be a staircase 
plus four three-spin groups and the higher state a staircase plus eight three-spin groups. 
These changes in configuration give rise to jumps in the energy and in the wavevector. 
The change in wavevector, in either direction, is A q  = 2 ~ m / 4 N  where m is the number 
of three-spin groups. 

This picture is confirmed by looking at the Fourier coefficients of the magnetisation 
for diagonal rows. We follow the method used by Selke and Fisher (1979) for the 
ANNNI model. The magnetisation per diagonal row can be written as 
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Figure 8. Fourier coefficients of the diagonal magnetisation against temperature and 
wavenumber for the three energy branches of the 80x 80 lattice ( a ) ,  lowest branch; ( b ) ,  
middle branch; ( c ) ,  upper branch. 

where z = 1,2,. . . , N is a discrete index labelling the diagonal rows. For each of the 
three energy branches of the 80 x 80 lattice, shown in figure 5 ,  we have computed the 
quantities ck = ( a i  + l ~ ; ) ’ ’ ~  as a function of k. These are plotted in figure 8( a ) ,  ( b )  and 
( c )  for both sets of diagonals. Figure 8 ( a ) ,  corresponding to the lowest state, shows 
c k  sharply peaked at k = 20, i.e. q = 2 ~ / 4 .  This is the wavenumber which describes 
the chessboard or  staircase ground states, and  hence this energy branch corresponds 
to the ordered phase of the system. Figure 8 ( b ) ,  corresponding to the middle state, 
shows c k  peaked at k = 19. This corresponds to a wavenumber q = 38r r /80 ,  i.e. a 
change in wavenumber of 2 ~ / 8 0 ,  in agreement with the picture of four three-spin 
groups discussed above. Figure 8 ( c ) ,  which corresponds to the upper branch, shows 
no  peak in c k  at high temperatures, and the development of a peak at k = 18 as the 
temperature. is lowered. This signifies the development of an  ordered state with 
q = h ~ / 8 0 ,  i.e. Aq = 4 ~ / 8 0 ,  in agitement with the picture of eight three-spin groups. 

Although we have not calculated the Fourier coefficients of the magnetisation for 
the 120x 120 lattice, we surmise that the four energy branches we have observed 
correspond respectively to 0, 4, 8, 12 groups of three-spins. 

4. Conclusions 

By means of careful Monte Carlo studies on rather large lattices we have studied the 
nature of the phase diagram of the biaxial next-nearest-neighbour Ising model, o r  
B N N N I  model, for the ratio of interactions J ‘ / J  = -1. This corresponds to the region 
in which the ground state of the system is a modulated structure with wavevector 
q = 27r(:, a) ,  the ‘chessboard’ or  ‘staircase’ configurations. 

Recently, Landau and Binder, also using Monte Carlo techniques, concluded that 
the model has a single first-order transition between the ordered and  disordered phases. 
Our results suggest that the true picture is more complicated. For 80 x 80 and 120 x 120 
lattices we find evidence for a sequence of modulated structures, associated with 
discrete jumps in the wavevector. These discrete jumps in the wavevector also corre- 
spond to discrete jumps in the internal energy, which at first sight might be interpreted 
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as a sequence of first-order transitions. However, as the lattice size increases these 
jumps become smaller, and in the thermodynamic limit the internal energy may well 
be a continuous function of temperature. 

Our results still d o  not unambiguously determine the behaviour of this model, as 
they are consistent with a number of possible scenarios, for example 

( i )  a single continuous transition; 
(ii) two transitions separated by an intermediate floating phase; or 
(iii) a ‘devil’s staircase’ type of structure. 
We propose to continue these studies to try to distinguish between these various 

possibilities. 
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